博文

目前显示的是 五月, 2017的博文

Understanding WDM MUX/DEMUX Ports and Its Application

图片
Wavelength division multiplexing (WDM) is a commonly used technology in optical communications. It combines multiple wavelengths to transmit signals on a single fiber. To realize this process, CWDM and DWDM mux/demux are the essential part. As we all know, there are several different ports on the WDM mux and demux. This article will give a clear explanation to these ports and their applications in WDM network. Overview of Different Ports on WDM MUX/DEMUX Line Port Line port, sometimes also called as common port, is the one of the must-have ports on CWDM and DWDM Mux/Demux. The outside fibers are connected to the Mux/Demux unit through this port, and they are often marked as Tx and Rx. All the WDM channels are multiplexed and demultiplexed over this port. Channel Port Like the line port, channel ports are another must-have ports. They transmit and receive signals on specific WDM wavelengths. CWDM Mux/Demux supports up to 18 channels from 1270nm to 1610nm with a channel sp

Application Cases of 10G CWDM Network

图片
CWDM network, as an easy-to-deploy and cost-effective solution, has been applied in many areas. Although CWDM network is not as perfect as DWDM networks in data capacity, it still can satisfy a wide range of applications in optical applications. And CWDM is a passive network, allowing any protocol to be transported over the link, as long as it is at the specific wavelength. This article is going to describe several application cases of 10G CWDM networks in different areas. Benefits of 10G CWDM Network Although 40G and 100G networks are developing rapidly, many of them still need to grow on the basis of 10G networks. And due to the high cost of 40G and 100G, 10G networks are still the most common networks to be deployed. Here are the main benefits of 10G CWDM networks. CWDM Mux/Demux is a passive component and requires no extra power, offering a cost-effective choice for network designers. Increased network connections and easy to evolve from 10G to 40G and 100G networks. For

How to Calculate Power Budget and Link Distance in CWDM Network

图片
By multiplexing separated wavelengths from multiple ports onto a single fiber in the network, coarse wavelength division multiplexing (CWDM) network increases fiber capacity at a low cost. And all the CWDM components are passive and do not need power, which requires lower investment than DWDM networks and make it popular. This article intends to explore how to calculate the power budget and link distance in CWDM network, offering more conveniences for your CWDM network deployment. Understand Optical Power Budget in CWDM system One important factor of network design, including various optical networks like DWDM and PON, is the optical power budget. Optical power budget is the amount of light available to make a fiber optic connection. The difference between the output power of the transmitter and the input power requirements of the receiver is referred to as the power budget. The power budget with various losses in an optical fiber, as shown in the picture below, is obtained by